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Abstract

Based on the thin-plate theory and the two-dimensional viscoelastic differential constitutive relation, the differential

equations of motion of the viscoelastic plate with linearly varying thickness and an arbitrary number of all-over part-

through cracks are established, and the expressions of the additional rotation angle induced by the cracks are deduced. We

assume that it is elastic in dilatation, but postulate the Kelvin–Voigt laws for distortion, the complex eigenvalue equations

of the viscoelastic plate with linearly varying thickness and multiple cracks are derived by the differential quadrature

method. The general eigenvalue equations of the viscoelastic plate with multiple cracks under different boundary

conditions are calculated. The effects of various geometric parameters, dimensionless delay time and dimensionless crack

parameters on the transverse vibration characteristics of a viscoelastic plate containing multiple all-over part-through

cracks are analyzed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of the dynamic behavior of varying-thickness rectangular thin plates as the basic structures is
of significant importance in practical engineering. Some of these plates with crack damage are not avoidable
and are quite adverse for the normal work of the structures. Usually, the presence of cracks can result in
changes of dynamic characteristics of the structures. In the existing literature, many methods have been
applied to study the vibration problems of varying-thickness rectangular thin plates. Appl and Byers [1]
studied the fundamental frequency of simply supported rectangular plates with linearly varying thickness.
Soni and Rao [2] used the spline technique method to solve the vibration of rectangular plates with varying
thickness. Tong [3] discussed the critical load and vibration characteristic of rectangular plates with varying
thickness by the two-step series expansion method. Wang and Feng [4] adopted the Levy-type solution and a
power series employing the method of Frobenius to obtain the exact solutions for the natural frequency of
rectangular plates with linearly varying thickness in the x-direction, and the effects of aspect ratio and
thickness ratio on the natural frequency were discussed.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The analysis of the effects of vibration on a thin plate with crack has important theoretic significance.
Much research work had been done on the vibration of plates with cracks [5,6]. Lee and Lim [7] determined
the natural frequencies of a rectangular plate with a centrally located crack using the Rayleigh method.
Solecki [8] studied the bending vibration of a rectangular plate with arbitrarily located rectilinear cracks.
Liew et al. [9] presented a solution method for analysis of cracked plates under vibration. Khadem and
Rezaee [10] took an analytical approach and investigated the vibration of the plate with an all-over part-
through crack. Han and Ren [11] analyzed the effect of cracks on the dynamic characteristics of
plates by means of a model of zero dimension element with crack. With the development of material
science, viscoelastic plates and shells are widely applied. In the research on the dynamical problem of
viscoelastic plate with crack Hu and Fu [12] introduced linear free vibration of viscoelastic plates with a crack
and four edges simply supported using the Galerkin procedure. To the author’s knowledge, few papers
have been presented on varying-thickness viscoelastic plates containing an arbitrary number of all-over
part-through cracks.

The aim of this paper is to construct the differential equations of motion of the viscoelastic plate with
linearly varying thickness and an arbitrary number of all-over part-through cracks. The equations are suitable
for various linear viscoelastic differential models. The complex eigenvalue equations of the cracked plate
constituted elastic behavior in dilatation and the Kelvin–Voigt laws for distortion are presented by the
differential quadrature method. The general eigenvalue equations of a viscoelastic plate with multiple cracks
and different boundary conditions are calculated. The effects of various geometric parameters, dimensionless
delay time and dimensionless crack parameters on the transverse vibration characteristics of viscoelastic plates
containing multiple all-over part-through cracks are analyzed.
2. Differential equation of motion of linearly varying-thickness viscoelastic plates with multiple cracks

Consider a viscoelastic rectangular thin plate with linearly varying thickness and n all-over part-through
cracks, and the crack is located at x ¼ xc (c ¼ 1,2,y,n), crack depth hc, as shown in Fig. 1. The thin plate is
divided by cracks into I (I ¼ 1,2,y,n+1) domains. The plate has length a and width b in the x and y

directions respectively, the thickness h1 at x ¼ 0 and h2 at x ¼ a in the z direction. The density of the material
is r. The varying relation of the thickness along x-direction is hðxÞ ¼ h1½1� ð1� h2=h1Þx=a�.

In three-dimension, the linear viscoelastic differential constitutive relation is

P0sij ¼ Q0eij ;

P00sii ¼ Q00�ii;

(
(1)

where the differential operator P0 ¼
Pl

k¼0p
0
kd

k=dtk, Q0 ¼
Pr

k¼0q0kd
k=dtk, P00 ¼

Pl1
k¼0p

00
kd

k=dtk, Q00 ¼Pr1
k¼0q

00
kd

k=dtk, p0k, q0k, p00k, q00k depend on the properties of the material; eij and sij are deviatoric tensor of
stress and strain, sii and eii are spherical tensor of stress and strain, respectively.
a

b

x

y

h2h1

xn
x2x1

z

n+121

Fig. 1. A linearly varying thickness viscoelastic plate having n number of cracks.
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For the plane stress problem, the constitutive equations of the linearly viscoelastic material in the Laplace
domain [13] are

P̄
0
ðP̄
0
Q̄
00
þ 2Q̄

0
P̄
00
Þs̄x ¼ Q̄

0
ð2P̄
0
Q̄
00
þ Q̄

0
P̄
00
Þ�̄x þ Q̄

0
ðP̄
0
Q̄
00
� Q̄

0
P̄
00
Þ�̄y;

P̄
0
ðP̄
0
Q̄
00
þ 2Q̄

0
P̄
00
Þs̄y ¼ Q̄

0
ðP̄
0
Q̄
00
� Q̄

0
P̄
00
Þ�̄x þ Q̄

0
ð2P̄
0
Q̄
00
þ Q̄

0
P̄
00
Þ�̄y;

Q̄
0
�̄xy ¼ P̄

0t̄xy;

8>><
>>: (2)

where P̄
0
, Q̄
0
, P̄
00
, Q̄
00
is the Laplace transform of the differential operators P0, Q0, P00, Q00.

For convenience, let P̄0 ¼ P̄
0
Q̄
00
þ 2Q̄

0
P̄
00
, Q̄0 ¼ Q̄

0
ð2P̄
0
Q̄
00
þ Q̄

0
P̄
00
Þ, Q̄1 ¼ Q̄

0
ðP̄
0
Q̄
00
� Q̄

0
P̄
00
Þ, the polynomial

P̄0, Q̄0 and Q̄1 about Laplace variable s1 are independent of spatial coordinates. The relations between internal
torque and the Laplace transformation w̄ of deflection w* are given by

P̄0ðM̄xÞ ¼ �
R hðxÞ=2
�hðxÞ=2 z2 Q̄0

q2w̄

qx2
þ Q̄1

q2w̄
qy2

� �
dz;

P̄0ðM̄yÞ ¼ �
R hðxÞ=2
�hðxÞ=2 z2 Q̄1

q2w̄
qx2
þ Q̄0

q2w̄
qy2

� �
dz;

P̄
0
ðM̄xyÞ ¼ P̄

0
ðM̄yxÞ ¼ �

R hðxÞ=2
�hðxÞ=2 z2Q̄

0 q2w̄

qx qy

� �
dz:

8>>>>>>>>><
>>>>>>>>>:

(3)

According to the D’Alembert principle, the equilibrium differential equation of the viscoelastic plate is
deduced as

q2Mx

qx2
þ 2

q2Mxy

qx qy
þ

q2My

qy2
� rhðxÞ

q2w�

qt2
¼ 0. (4)

Multiplying the result of the Laplace transformation of Eq. (4) by P̄0P̄
0
, if the partial derivative is

continuous, Eq. (4) can be rewritten as

P̄
0 q2½P̄0ðM̄xÞ�

qx2

� �
þ 2P̄0

q2½P̄0ðM̄xyÞ�

qx qy

 !
þ P̄

0 q2½P̄ðM̄yÞ�

qy2

 !
� rhðxÞP̄0P̄

0
s̄2w̄ ¼ 0. (5)

Substituting Eq. (3) into Eq. (5), the differential equation of the viscoelastic rectangular plate with linearly
varying thickness in the Laplace domain is obtained as

h3
ðxÞ

12
P̄
0
Q̄0r

4w̄þ
6h2
ðxÞ

12

dhðxÞ

dx
P̄
0
Q̄0

q
qx
r2w̄þ

6hðxÞ

12

dhðxÞ

dx

� �2

P̄
0
Q̄0

q2w̄
qx2
þ P̄

0
Q̄1

q2w̄

qy2

� �
þ P̄0P̄

0rhðxÞs̄2w̄ ¼ 0. (6)

Eq. (6) is suitable for various linear viscoelastic differential constitutive relations, and the corresponding
differential equations are obtained by introducing the Laplace transform P̄

0
, Q̄
0
, P̄
00
, Q̄
00
of the differential

operator.
Assuming elastic behavior in dilatation and the Kelvin–Voigt law for distortion, the constitutive equations

are as follows [14]:

sij ¼ 2Geij þ 2Z_eij ;

sii ¼ 3K�ii;

(
(7)

where G, Z, and K are the shear elastic modulus, viscoelastic coefficient, and bulk elastic modulus, respectively.
From the Laplace transformation of Eq. (7), one can obtain the differential operator P̄

0
¼ 1; Q̄

0
¼

2G þ 2Zs̄; P̄
00
¼ 1; Q̄

00
¼ 3K . Substituting the above polynomial to Eq. (6), and carrying out the Laplace

inverse transformation, the differential equation of motion of linearly varying thickness viscoelastic plates
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constituted by the Kelvin–Voigt model is

h2
1

12
1� 1�

h2

h1

� �
x

a

� �2
A3 þ A4

q
qt
þ A5

q2

qt2

� �
r4w�I þ

6h2
1

12a
1� 1�

h2

h1

� �
x

a

� �
h2

h1
� 1

� �

� A3 þ A4
q
qt
þ A5

q2

qt2

� �
q
qx
r2w�I þ

6h2
1

12a2

h2

h1
� 1

� �2

A3 þ A4
q
qt
þ A5

q2

qt2

� �
q2w�I
qx2

�

þ A6 þ A7
q
qt
� A5

q2

qt2

� �
q2w�I
qy2

�
þ r A1 þ A2

q
qt

� �
q2w�I
qt2
¼ 0 ðI ¼ 1; 2; . . . ; nþ 1Þ, (8)

where

A1 ¼ 3K þ 4G; A2 ¼ 4Z; A3 ¼ 2Gð6K þ 2GÞ; A4 ¼ 8GZþ 12KZ; A5 ¼ 4Z2; A6 ¼ 2Gð3K � 2GÞ,

A7 ¼ 6KZ� 8GZ; G ¼
E

2ð1þ mÞ
; K ¼

E

3ð1� 2mÞ
,

m is Poisson’s ratio,

r4w�I ¼
q4w�I
qx4
þ 2

q4w�I
qx2 qy2

þ
q4w�I
qy4

; r2w�I ¼
q2w�I
qx2
þ

q2w�I
qy2

.

3. Vibration model of a cracked plate

At the crack location x ¼ xc, one can write continuity conditions [5,10,12] as follows:

w�I ðx
�
I ; y; tÞ ¼ w�Iþ1ðx

þ
I ; y; tÞ; MIxðx

�
I ; y; tÞ ¼MðIþ1Þxðx

þ
I ; y; tÞ,

VIxðx
�
I ; y; tÞ ¼ V ðIþ1Þxðx

þ
I ; y; tÞ; w�I ;xðx

�
I ; y; tÞ þY� w�Iþ1;xðx

þ
I ; y; tÞ ¼ 0. (9)

The above equations express the equality of deflections, bending moment and equivalent shear forces at the
two sides of the crack location, respectively, and the slope compatibility condition of the cracks, the Y is the
additional rotation angle induced by the crack, VIx ¼ QIx+MIxy,y.

Performing Laplace transform of Eq. (9), and multiplying by the polynomial P̄0 and P̄0P̄
0
, one yields

w̄I ðx
�
I ; yÞ ¼ w̄Iþ1ðx

þ
I ; yÞ; P̄0 M̄Ixðx

�
I ; yÞ

� �
¼ P̄0 M̄ ðIþ1Þxðx

þ
I ; yÞ

� �
,

P̄0P̄
0

Q̄Ixðx
�
I ; yÞ

� �
þ P̄0P̄

0
M̄Ixy;yðx

�
I ; yÞ

� �
¼ P̄0P̄

0
Q̄ðIþ1Þxðx

þ
I ; yÞ

� 	
þ P̄0P̄

0
M̄ ðIþ1Þxy;yðx

þ
I ; yÞ

� �
,

w̄I ;xðx
�
I ; yÞ þ Ȳ� w̄Iþ1;xðx

þ
I ; yÞ ¼ 0. (10)

In Eq. (10), the Ȳ is the additional rotation angle in the Laplace domain

3Q̄
0
Q̄
00
ð2P̄
0
Q̄
00
þ P̄

00
Q̄
0
ÞȲ ¼ 12 ð2P̄

0
Q̄
00
þ P̄

00
Q̄
0
Þ
2
� ðP̄

0
Q̄
00
� P̄

00
Q̄
0
Þ
2

h i
abbs̄b, (11)

where s̄b is the Laplace transform of sb. One obtains the relations between s̄b and the Laplace transformation
w̄I of the deflection w�I

2P̄
0
ðP̄
0
Q̄
00
þ 2Q̄

0
P̄
00
Þs̄b ¼ �hðxÞQ̄

0
ð2P̄
0
Q̄
00
þ P̄

00
Q̄
0
Þ
q2w̄I

qx2
þ ðP̄

0
Q̄
00
� P̄

00
Q̄
0
Þ
q2w̄I

qy2

� �
, (12)

abb expresses the non-dimensional compliance coefficient, characterizing the crack is given by the following equation:

abb ¼

Z sc

0

g2
b dB, (13)

where gb is a dimensionless function of the relative crack depth sc ¼ hc(x)/h(x) defined as

gb ¼ B1=2ð1:99� 2:47Bþ 12:97B2 � 23:17B3 þ 24:80B4Þ. (14)
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Eq. (11) is suitable for various linear viscoelastic differential constitutive relations. Substituting the polynomial P̄
0
,

Q̄
0
, P̄
00
, Q̄
00
to Eq. (11), the corresponding values Ȳ are obtained. Substituting Eq. (14) into Eq. (11), by carrying out

the inverse transformation, Y can obtained. Assuming elastic behavior in dilatation and the Kelvin–Voigt law for
distortion, one may obtain

A8 þ A9
q
qt

� �
Y ¼ �6h1 1� 1�

h2

h1

� �
x

a

� �
abb A8 þ A9

q
qt

� �
q2w�I
qx2
þ A10 � A9

q
qt

� �
q2w�I
qy2

� �
, (15)

where A8 ¼ 6K+2G, A9 ¼ 2Z, A10 ¼ 3K�2G.
Introducing dimensionless parameters and variables

x ¼
x

a
; z ¼

y

b
; wI ¼

w�I
a
; c ¼

a

b
; r ¼

h1

a
; l ¼

h2

h1
,

t ¼
th1

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12rð1� m2Þ

s
; H ¼

h1

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12rð1� m2Þ

s
Z
E
. (16)

Substituting Eq. (16) into Eq. (8), one obtains

1� 1�
h2

h1

� �
x

� �2
1þ

4

3
ð2� mÞð1þ mÞH

q
qt
þ

4

3
ð1� 2mÞð1þ mÞ2H2 q2

qt2

� �
r4wI

þ 6 1� 1�
h2

h1

� �
x

� �
h2

h1
� 1

� �
1þ

4

3
ð2� mÞð1þ mÞH

q
qt
þ

4

3
ð1� 2mÞð1þ mÞ2H2 q2

qt2

� �
q
qx
r2wI

þ 6
h2

h1
� 1

� �2

1þ
4

3
ð2� mÞð1þ mÞH

q
qt
þ

4

3
ð1� 2mÞð1þ mÞ2H2 q2

qt2

� ��
q2wI

qx2

þ mþ
2

3
ð5m� 1Þð1þ mÞH

q
qt
�

4

3
ð1� 2mÞð1þ mÞ2H2 q2

qt2

� �
c2

q2wI

qz2

�

þ 1þ
4ð1þ mÞð1� 2mÞ

3ð1� mÞ
H

q
qt

� �
q2wI

qt2
¼ 0 ðI ¼ 1; 2; . . . ; nþ 1Þ, (17)

where t is dimensionless time, H is dimensionless delay time,

r2wI ¼
q2wI

qx2
þ c2

q2wI

qz2
; r4wI ¼

q4wI

qx4
þ 2c2

q4wI

qx2 qz2
þ c4

q4wI

qz4
.

The dimensionless continuity conditions at the location (x ¼ xc) is

wI ðx
�
I ; z; tÞ ¼ wIþ1ðx

þ
I ; z; tÞ,

B1
q2wI ðx

�
I ; z; tÞ

qx2
þ B2c

2 q
2wI ðx

�
I ; z; tÞ

qz2

� �
¼ B1

q2wIþ1ðx
þ
I ; z; tÞ

qx2
þ B2c

2 q
2wIþ1ðx

þ
I ; z; tÞ

qz2

� �
,

1� 1�
h2

h1

� �
x�c

� �
B1

q3wI ðx
�
I ; z; tÞ

qx3
þ B3c2

q3wI ðx
�
I ; z; tÞ

qx qz2

� �
þ 3

h2

h1
� 1

� �
B1

q2wI ðx
�
i ; z; tÞ

qx2
þ B2c

2 q
2wI ðx

�
I ; z; tÞ

qz2

� �

1� 1�
h2

h1

� �
xþI

� �
B1

q3wIþ1ðx
þ
I ; z; tÞ

qx3
þ B3c

2 q
3wIþ1ðx

þ
I ; z; tÞ

qx qz2

� �
þ 3

h2

h1
� 1

� �
B1

q2wIþ1ðx
þ
I ; z; tÞ

qx2
þ B2c2

q2wIþ1ðx
þ
I ; z; tÞ

qz2

� �
,

B1
qwI ðx

�
I ; z; tÞ
qx

�
qwIþ1ðx

þ
I ; z; tÞ

qx

� �
¼ �6r 1� 1�

h2

h1

� �
x�I

� �
abb B1

q2wI ðx
�
I ; z; tÞ

qx2
þ B2c2

q2wI ðx
�
I ; z; tÞ

qz2

� �
, (18)

where

B1 ¼ 1þ
2

3
ð1� 2mÞð1þ mÞH

q
qt
; B2 ¼ m�

2

3
ð1� 2mÞð1þ mÞH

q
qt
; B3 ¼ ð2� mÞ þ 2ð1� 2mÞð1þ mÞH

q
qt

.
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Suppose that the solution to Eq. (14) takes the form wI ðx; z; tÞ ¼W I ðx; zÞejot, a dimensionless
differential equation of the linearly varying thickness viscoelastic plate with the Kelvin–Voigt model is
expressed as

1� 1�
h2

h1

� �
x

� �2
D1r

4W I þ 6 1� 1�
h2

h1

� �
x

� �
h2

h1
� 1

� �
c2D1

q
qx
r2W I

þ 6
h2

h1
� 1

� �2

D1
q2W I

qx2
þD2c

2 q
2W I

qz2

� �
þD3j

2o2W I ¼ 0, (19)

where

D1 ¼ 1�
4ð1� 2mÞð1þ mÞ2

3
H2o2 þ

4ð2� mÞð1þ mÞ
3

Hoj; D2 ¼ mþ
4ð1� 2mÞð1þ mÞ2

3
H2o2

þ
2ð5m� 1Þð1þ mÞ

3
Hoj; D3 ¼ 1þ

4ð1� 2mÞð1þ mÞ
3ð1� mÞ

Hoj; j ¼
ffiffiffiffiffiffiffi
�1
p

and o is the dimensionless complex frequency.
Substituting wI ðx; z; tÞ ¼W I ðx; zÞejot into Eq. (18) we obtain the following:

W I ðx
�
I ; zÞ ¼W Iþ1ðx

þ
I ; zÞ,

D4
q2W I ðx

�
I ; zÞ

qx2
þD5c

2 q
2W Iþ1ðx

�
I ; zÞ

qz2

� �
¼ D4

q2W Iþ1ðx
þ
I ; zÞ

qx2
þD5c

2 q
2W Iþ1ðx

þ
I ; zÞ

qz2

� �
,

1� 1�
h2

h1

� �
x�c

� �
D4

q3W I ðx
�
I ; zÞ

qx3
þD6c

2 q
3W I ðx

�
I ; zÞ

qx qz2

� �
þ 3

h2

h1
� 1

� �
D4

q2W I ðx
�
I ; zÞ

qx2
þD5c2

q2W I ðx
�
I ; zÞ

qz2

� �

¼ 1� 1�
h2

h1

� �
xþc

� �
D4

q3W Iþ1ðx
þ
I ; zÞ

qx3
þD6c

2 q
3W Iþ1ðx

þ
I ; zÞ

qx qz2

� �

þ 3
h2

h1
� 1

� �
D4

q2W Iþ1ðx
þ
I ; zÞ

qx2
þD5c

2 q
2W Iþ1ðx

þ
I ; zÞ

qz2

� �
,

D4
qW I ðx

�
I ; zÞ

qx
�

qW Iþ1ðx
þ
I ; zÞ

qx

� �
¼ �6r 1� 1�

h2

h1

� �
x�I

� �
abb D4

q2W I ðx
�
I ; zÞ

qx2
þD5c2

q2W I ðx
�
I ; zÞ

qz2

� �
. (20)

In the above relation,

D4 ¼ 1þ
2

3
ð1� 2mÞð1þ mÞHjo; D6 ¼ ð2� mÞ þ 2ð1� 2mÞð1þ mÞHjo,

D5 ¼ m�
2

3
ð1� 2mÞð1þ mÞHjo.

4. Complex eigenvalue equation

The complex eigenvalue equations of the viscoelastic plate constituted by the Kelvin–Voigt model with
cracks are established by the differential quadrature method. The differential quadrature method [16] is to
approximate the partial derivatives of a function with respect to a spatial variable at any discrete point as the
weighted linear sum of the function values at all the discrete points chosen in the solution domain of
the spatial variable. Postulating smooth function f(x, y) in region 0pxpa, 0pypb, the partial derivative of
the rth order with respect to x of function f(x, y) at the point (xi, yi), the partial derivative of the sth order with
respect to y, the mixed partial derivative of the sth order with respect to y and the rth order with respect to x

are defined as follows, respectively [15]:
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qrf ðxi; yjÞ

qxr
¼
XN

k¼1

A
ðrÞ
ik f ðxk; yjÞ ði ¼ 1; 2; . . . ;N; r ¼ 1; 2; . . . ;N � 1Þ,

qsf ðxi; yjÞ

qys
¼
XM
m¼1

A
ðsÞ
jmf ðxi; ymÞ ðj ¼ 1; 2; . . . ;M; s ¼ 1; 2; . . . ;M � 1Þ, (21)

qrþsf ðxi; yjÞ

qxr qys
¼
XN

k¼1

A
ðrÞ
ik

XM
m¼1

A
ðsÞ
jmf ðxi; ymÞ,

where N and M are the number of nodes in the x and y directions, respectively, A
ðrÞ
ik and A

ðsÞ
jm are weight

coefficients, and they are determined by [16]

A
ð1Þ
ik ¼

QN
m¼1
mai;k

ðxi � xmÞ

,QN
m¼1
mak

ðxk � xmÞ ði; k ¼ 1; 2; . . . ;N; kaiÞ;

PN
m¼1
mai

1
xi�xm

ði; k ¼ 1; 2; . . . ;N; k ¼ iÞ;

8>>>>>><
>>>>>>:

(22)

A
ð1Þ
jm ¼

QM
m¼1

maj;m

ðyj � ymÞ

,QM
m¼1
mam

ðym � ymÞ ðj;m ¼ 1; 2; . . . ;M; majÞ;

PM
m¼1
maj

1

yj � ym
ðj;m ¼ 1; 2; . . . ;M; m ¼ jÞ:

8>>>>>><
>>>>>>:

(23)

In the case of r ¼ 2,3,y,N�1; s ¼ 2,3,y,M�1, they are as follows:

A
ðrÞ
ik ¼

r A
ðr�1Þ
ii A

ð1Þ
ik �

A
ðr�1Þ
ik

xi � xk

 !
ði; k ¼ 1; 2; . . . ;N; kaiÞ;

�
PN
m¼1
mai

A
ðrÞ
im ði ¼ 1; 2; . . . ;N; 1prpðN � 1ÞÞ;

8>>>>><
>>>>>:

(24)

A
ðsÞ
jm ¼

s A
ðs�1Þ
jj A

ð1Þ
jm �

A
ðs�1Þ
jm

yj � ym

 !
ðj;m ¼ 1; 2; . . . ;M; majÞ;

�
PM
m¼1
maj

A
ðsÞ
jm ðj ¼ 1; 2; . . . ;M; 1pspðM � 1ÞÞ:

8>>>>><
>>>>>:

(25)

According to the procedures of the differential quadrature method, Eq. (19) can be given in the form:

1� 1�
h2

h1

� �
x

� �2 XN

k¼1

A
ð4Þ
ik W kj þ 2c2

XM
m¼1

A
ð2Þ
jm

XN

k¼1

A
ð2Þ
ik W km þ c4

XM
m¼1

A
ð4Þ
jm W im

 !
þ 6 1� 1�

h2

h1

� �
x

� �

�
h2

h1
� 1

� � XN

k¼1

A
ð3Þ
ik W kj þ c2

XM
m¼1

A
ð2Þ
jm

XN

k¼1

A
ð1Þ
ik W km

 !
þ 6

h2

h1
� 1

� �2

mc2
XM
m¼1

A
ð2Þ
jm W im þ

XN

k¼1

A
ð2Þ
ik W kj

 !

þ 1� 1�
h2

h1

� �
x

� �2
a1

XN

k¼1

A
ð4Þ
ik W kj þ 2c2

XM
m¼1

A
ð2Þ
jm

XN

k¼1

A
ð2Þ
ik W km þ c4

XM
m¼1

A
ð4Þ
jm W im

 !
Hj þ 6 1� 1�

h2

h1

� �
x

� �(
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�
h2

h1
� 1

� �
a1 c2

XM
m¼1

A
ð2Þ
jm

XN

k¼1

A
ð1Þ
ik W km þ

XN

k¼1

A
ð3Þ
ik W kj

 !
Hj þ 6

h2

h1
� 1

� �2

a1

XN

k¼1

A
ð2Þ
ik W kj þ a3c2

XM
m¼1

A
ð2Þ
jm W im

 !
Hj

)
o

þ 1� 1�
h2

h1

� �
x

� �2
a2

XN

k¼1

A
ð4Þ
ik W kj þ 2c2

XM
m¼1

A
ð2Þ
jm

XN

k¼1

A
ð2Þ
ik W km þ c4

XM
m¼1

A
ð4Þ
jm W im

 !
H2j2

(

þ 6 1� 1�
h2

h1

� �
x

� �
h2

h1
� 1

� �
a2 c2

XM
m¼1

A
ð2Þ
jm

XN

k¼1

A
ð1Þ
ik W km þ

XN

k¼1

A
ð3Þ
ik W kj

 !
H2j2 þ j2W

þ6
h2

h1
� 1

� �2

a2

XN

k¼1

A
ð2Þ
ik W kj � a2c2

XM
m¼1

A
ð2Þ
jm W im

 !
H2j2

)
o2 þ a4Hj3Wo3 ¼ 0, (26)

where

a1 ¼
4

3
ð2� mÞð1þ mÞ; a2 ¼

4

3
ð1� 2mÞð1þ mÞ2; a3 ¼

2

3
ð1þ mÞð5m� 1Þ; a4 ¼

4ð1� 2mÞð1þ mÞ
3ð1� mÞ

.

The differential quadrature forms of crack continuity conditions (20) are

W cj �W cj ¼ 0,

D4

XN

k¼1

A
ð2Þ
cþ1;kW kj þD5c

2
XM
m¼1

A
ð2Þ
jm W km ¼ D4

XN

k¼1

A
ð2Þ
cþ1;kW kj þD5c

2
XM
m¼1

A
ð2Þ
jm W km,

1� 1�
h2

h1

� �
x

� �
D4

XN

k¼1

A
ð3Þ
cþ2;kW kj þD6c

2
XM
m¼1

A
ð2Þ
jm

XN

k¼1

A
ð1Þ
cþ2;kW km

 !

þ 3
h2

h1
� 1

� �
D4

XN

k¼1

A
ð2Þ
cþ2;kW kj þD5c

2
XM
m¼1

A
ð2Þ
jm W km

 !

¼ 1� 1�
h2

h1

� �
x

� �
D4

XN

k¼1

A
ð3Þ
cþ2;kW kj þD6c

2
XM
m¼1

A
ð2Þ
jm

XN

k¼1

A
ð1Þ
cþ2;kW km

 !

þ 3
h2

h1
� 1

� �
D4

XN

k¼1

A
ð2Þ
cþ2;kW kj þD5c

2
XM
m¼1

A
ð2Þ
jm W km

 !
,

D4

XN

k¼1

A
ð1Þ
cþ3;kW kj þD4

XN

k¼1

A
ð1Þ
cþ3;kW kj þ 6r 1� 1�

h2

h1

� �
x

� �
abb D4

XN

k¼1

A
ð2Þ
cþ3;kW kj þD5c2

XN

k¼1

A
ð2Þ
cþ3;kW kj

 !
¼ 0.

(27)

In this paper, N ¼M, it is noted that the boundary conditions are applied and continuity conditions at the
crack line are needed. The simply supported plate adopts the weight coefficient method to treat the boundary,
the clamped-supported plate adopts the d method and the crack location conditions adopt the d method to
treat. The differential quadrature forms of boundary conditions of the clamped–simply–clamped–simply edge
support and clamped–simply–simply–simply edge support are as follows:

W 1j ¼W Nj ¼W i1 ¼W iN ¼ 0 ði; j ¼ 1; 2; . . . ;NÞ;PN
k¼1

A
ð1Þ
ik W kj ¼ 0 ði ¼ 2;N � 1; j ¼ 2; 3; . . . ;N � 2Þ;

PN
k¼1

A
ð2Þ
jk W ik ¼ 0 ðj ¼ 1;N; i ¼ 1; 2; . . . ;NÞ;

8>>>>>><
>>>>>>:

(28)
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Fig. 2. A plate with simply–clamped–simply–clamped edge support (S–C–S–C) and clamped–simply–simply–simply edge support

(C–S–S–S).
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W 1j ¼W Nj ¼W i1 ¼W iN ¼ 0 ði; j ¼ 1; 2; . . . ;NÞ;PN
k¼1

A
ð1Þ
ik W kj ¼ 0 ði ¼ 2; j ¼ 2; 3; . . . ;N � 2Þ;

PN
k¼1

A
ð2Þ
ik W kj ¼ 0 ði ¼ N � 1; j ¼ 2; 3; . . . ;N � 2Þ;

PM
m¼1

B
ð2Þ
jm W im ¼ 0 ðj ¼ 2;N � 1; i ¼ 3; 4; . . . ;N � 2Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

(29)

Eqs. (26) and (27) and Eq. (28) or (29) can be written in the matrix form as

ðo3½Q� þ o2½R� þ o½G � þ ½K �Þ fW kjg ¼ f0g, (30)

where the matrix [Q], [R], [G], [K] involve such parameters as dimensionless delay time H, aspect ratio of the
plate, thickness parameter of the plate and crack parameter. Eq. (30) is a generalized eigenvalue problem.
Then, the complex eigenvalue equations of the linearly varying thickness viscoelastic plate with linearly
varying thickness and an arbitrary number of all-over part-through cracks is

o3½Q� þ o2½R� þ o½G � þ ½K �
�� �� ¼ 0. (31)

By solving the eigenvalue equations, one can obtain the complex frequency and eigenvalue curves of the
viscoelastic plate with cracks (see Fig. 2).
5. Numerical results and analysis

If H-0, s ¼ 0, one may obtain the equation of transverse free vibration of the linearly varying thickness
elastic plate. To validate the present theory and to check the correctness of the program, the first three natural
frequencies of the transverse free vibration of the intact linearly varying thickness elastic plate with different
boundaries are calculated first. Tables 1 and 2 show the results for the simply–clamped–simply–clamped edge
support and clamped–simply–simply–simply edge support, respectively. It can be seen that the present results
agree very well with those from Ref. [17], and the natural frequencies of the elastic plate increase with the
increase of the aspect ratio and thickness ratio.

In the present work, in order to perform the vibration analysis of the linearly varying-thickness viscoelastic
rectangular plate containing an arbitrary number of all-over part-through cracks, one may consider the
viscoelastic rectangular plate containing one, two, three or four cracks constituted by the Kelvin–Voigt model
under two different types of boundary conditions.
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Table 1

The first three natural frequencies of the transverse free vibration with S–C–S–C supported plate

Aspect ratio c Thickness ratio l Present solution Aspect ratio c Thickness ratio l Present solution

o1 o2 o3 o1 o2 o3

0.5 1.0 23.8201 28.9551 39.0932 1.5 1.0 39.0931 79.5373 102.2192

0.8 21.3774 25.9875 35.0835 0.8 35.0834 71.3839 91.5520

0.6 18.7798 22.8355 30.8175 0.6 30.8166 62.7202 79.7650

0.4 15.9391 19.3944 26.1487 0.4 26.1487 53.2584 66.3297

0.2 12.6303 15.3976 20.7100 0.2 20.7100 42.2586 50.0892

Results in [17] 1.0 23.82 28.95 39.09

1.0 1.0 28.9551 54.7466 69.3393 2.0 1.0 54.7466 94.5971 154.7996

0.8 25.9874 49.1132 62.2240 0.8 49.1132 84.9155 138.9283

0.6 22.8351 43.0743 54.6451 0.6 43.0743 74.6655 122.0559

0.4 19.3944 36.4057 46.3416 0.4 36.4057 63.5226 103.6185

0.2 15.3977 28.5431 36.6445 0.2 28.5430 50.6400 77.3924

Results in [17] 1.0 28.95 54.74 69.33

Table 2

The first three natural frequencies of the transverse free vibration with C–S–S–S supported plate

Aspect ratio c Thickness ratio l Present solution Aspect ratio c Thickness ratio l Present solution

o1 o2 o3 o1 o2 o3

0.5 1.0 17.3339 23.6482 35.0527 1.5 1.0 35.0527 69.9194 100.2711

0.8 15.8843 21.3411 31.3544 0.8 31.3544 62.8436 89.1599

0.6 14.3342 18.9213 27.4679 0.6 27.4679 55.3808 76.8536

0.4 12.6240 16.3240 23.2986 0.4 23.2986 47.3164 62.9263

0.2 10.5955 13.3760 18.6072 0.2 18.6072 38.1023 46.5785

1.0 1.0 23.6482 51.6758 58.6534 2.0 1.0 51.6757 86.1406 140.8584

0.8 21.3411 46.0620 52.8844 0.8 46.0620 77.2470 126.4652

0.6 18.9213 40.0864 46.7691 0.6 40.0864 67.9159 111.2325

0.4 16.3240 33.5819 40.1162 0.4 33.5819 57.8957 94.6979

0.2 13.3760 26.1604 32.4401 0.2 26.1604 46.5279 72.4041
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5.1. A S– C– S– C supported plate with a crack

Figs. 3 and 4 show the variation of the first two-order dimensionless complex frequencies o of the plate with
crack depth for H ¼ 10�3, r ¼ 0.15, c ¼ 1.0 and location x1 ¼ 0.1, 0.28, 0.3. This means that a comparison is
made with the results known in the elastic plate, it should be noted that the frequencies of the viscoelastic plate
decrease with the increase of dimensionless delay time, and the change in frequencies decreases as a crack
increases. For a certain value of the depth, as the crack gets closer to the center of the plate, the real part of the
dimensionless complex frequency o decreases, while its imaginary part increases. For a certain value of the
crack location, by increasing the depth of the crack, the real part of the dimensionless complex frequency o
decreases, while its imaginary part increases, and the corresponding value of the variation ratio increases by
increasing the crack, the same situation for the second vibration mode. As a result, the introduction of an
all-over part-through crack in a viscoelastic plate decreases the stiffness of the plate; by increasing the crack,
the stiffness of the structure decreasing.
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Figs. 5–7 show the variation of dimensionless complex frequencies o of the plate with crack
depth for H ¼ 10�3, r ¼ 0.15, c ¼ 1.0, x ¼ 0.5 and location l ¼ 0.2, 0.4, 0.6, 0.8, 1.0. For the case
of s ¼ 0 and by referring to Table 1, with the increase of dimensionless delay time, the real part of the
dimensionless complex frequency o decreases, its imaginary part changes positive values from zero, and
the imaginary values increase with the increase of H and mode order. By increasing the depth of the crack, the
real part of the dimensionless complex frequency o decreases, while its imaginary parts increase. By increasing
the thickness ratio l, the real part of the dimensionless complex frequency o increases, and its imaginary parts
increase.

Figs. 8 and 9 show the variation of the first two-order dimensionless complex frequencies o of the plate with
crack location for H ¼ 10�3, r ¼ 0.15, c ¼ 1.0, l ¼ 1, s ¼ 0.1 and the location x ¼ 0.1, 0.28, 0.3, respectively.
As shown in the figure, as the crack gets to the right end from the left end, the real part of the dimensionless
complex frequency o decreases, while its imaginary part increases. When the crack location is x ¼ 0.5, the real
part of o is least, while its imaginary part remains max. When the location further gets closer to the right end,
the real part of o begins to increase, while its imaginary part remains decreases. For the case of x ¼ 1, the
dimensionless complex frequency is the equivalence relation with the case of x ¼ 0, and the result is the same
as the value of the case of s ¼ 0.

Figs. 10 and 11 show the variation of the first two-order dimensionless complex frequencies o of the plate
with crack location for H ¼ 10�3, r ¼ 0.15, c ¼ 1.0, l ¼ 0.8, s ¼ 0.1, 0.2, 0.3, respectively. As shown in the
figure, as the crack gets closer to the center of the plate and the depth of the crack increases, the real part of the
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dimensionless complex frequency o of the linearly varying-thickness plate decreases, while its imaginary part
increases. For the case of x ¼ 0.5, the real part of the dimensionless complex frequency o remains least, while
its imaginary part is max. The same situation is applicable to the second vibration mode.
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Fig. 12. The first dimensionless complex frequency varied with crack location (H ¼ 0.001, l ¼ 0.8, c ¼ 1).
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5.2. A S– C– S– C supported plate with two cracks

Figs. 12 and 13 show the variation of the first two-order dimensionless complex frequencies o of the plate
with crack depth, the geometrical properties of the plate are used, that is H ¼ 10�3, r ¼ 0.15, c ¼ 1.0, l ¼ 0.8.
The real line expresses the curve of o of the plate with a crack that is at location x1 ¼ 0.28. The broken line is
the curve of o of the plate with two cracks, the first crack is at location x1 ¼ 0.28 and has a depth s1 ¼ 0.3, the
second crack’s location is at x2 ¼ 0.5 and its depth varies from s2 ¼ 0 to 0.5. As shown in Figure, the real part
of the dimensionless complex frequency o of the plate with two cracks is lower than one crack, while its
imaginary part is larger than one crack. As a result, the introduction of two cracks in a viscoelastic plate
decreases the stiffness of the plate; with increase in the crack, the stiffness of the structure diminishes more.

5.3. A S– C– S– C supported plate with three cracks

Figs. 14 and 15 show the variation of the first two-order dimensionless complex frequencies o of the plate
containing three cracks with crack location, for H ¼ 10�3, r ¼ 0.15, c ¼ 1.0, l ¼ 0.8 and s ¼ 0.1, 0.2, 0.3,
respectively. Both the first and the second cracks are at left locations (x1 ¼ 0.01, x2 ¼ 0.049) and have a depth
(s1 ¼ 0.1, s2 ¼ 0.3). The third crack’s location varies from x3 ¼ 0.1 to 0:99and its depth also varies (s ¼ 0.1, 0:2
or 0:3). It can be seen that the effects of the third crack on the dimensionless complex frequencies are quite
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obvious, it is clear that on x ¼ 0.5, the dimensionless complex frequency o has the least value, and its
imaginary part has the peak value.

Fig. 16 shows the effect of the third crack on the first-order dimensionless complex frequencies o, the
geometrical properties of the plate are used, that is H ¼ 10�3, r ¼ 0.15, s3 ¼ 0.3, c ¼ 1.0 and l ¼ 0.5, 0.8,
respectively. As shown in the figure, by increasing the thickness ratio l, the real part of the dimensionless
complex frequencyo increases, and its imaginary parts increase.

5.4. A C– S– S– S supported plate with four cracks

Figs. 17 and 18 show the variation of the first two-order dimensionless complex frequencies o of the linearly
varying thickness viscoelastic plate containing four cracks with crack location, for H ¼ 10�3, r ¼ 0.15,
s3 ¼ 0.3, c ¼ 1.0 and l ¼ 0.5. The locations and depths of the first, second and third cracks are all predefined
(x1 ¼ 0.01, s1 ¼ 0.3, x2 ¼ 0.1, s2 ¼ 0.2, x3 ¼ 0.188, s3 ¼ 0.1). The fourth crack’s location varies from x4 ¼ 0.28
to 1 and its depth varies, s4 ¼ 0.15 or 0.3. Figs. 19 and 20 show the variation of the first two-order
dimensionless complex frequencies o of the linearly varying-thickness viscoelastic plate containing four
cracks, for H ¼ 10�3, r ¼ 0.15, x4 ¼ 0.5, aspect ratio c ¼ 0.5 and l ¼ 0.8 or 1. Figs. 21 and 22 show the
variation of the first-order dimensionless complex frequencies o of the linearly varying thickness viscoelastic
plate containing four cracks, for H ¼ 10�3, r ¼ 0.15, x4 ¼ 0.5, l ¼ 0.5 and an aspect ratio c ¼ 0.5 or 1.0
or 1.5. As shown in the above figures, by considering the boundary condition for the case of the
clamped–simply–simply–simply supported plate, the value of variation ratio of the real part and imaginary
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part of the dimensionless complex frequency o will increase. With the increase in crack number, the
corresponding variation ratios of the real parts and imaginary part of the dimensionless complex frequencies
increase. However, on increasing the aspect ratio and thickness ratio, the real part and imaginary part of
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dimensionless complex frequency o will increase. In addition, by increasing the crack depth, the less the aspect
ratio of the plate is, the less the variation ratio of the real part and imaginary part of the dimensionless
complex frequencies is.

6. Conclusions

The differential equations of motion of the linearly varying thickness viscoelastic plate containing an
arbitrary number of all-over part-through cracks and the expressions of the additional rotation induced by the
cracks are established. The complex eigenvalue equations of the linearly varying thickness viscoelastic plate
with an arbitrary number of cracks are obtained by the differential quadrature method. The numerical method
of calculation and investigating the changes of the dimensionless complex frequencies of a viscoelastic
rectangular plate due to the presence of cracks are obtained. By referring to the complex eigenvalue equations,
Dimensionless complex frequencies of the system have direct relations with the dimensionless delay time of the
material, the aspect ratio, the thickness ratio and the crack parameter. This means that one can obtain a
quantitative analysis evidence of the influence of the crack damage on mode parameter.

It can be seen from the results of the numerical calculation, that in the case of the presence of a crack, when
H-0 the real part of the dimensionless complex frequency o has positive values, its imaginary part is zero.
With the increase of dimensionless delay time, its imaginary parts change positive values from zero and
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increase with mode order. In the case of the presence of a crack, by increasing the depth of the crack and
getting closer to the center of the plate from the edge of the plate, the real part of the dimensionless complex
frequency o decreases, and its imaginary parts increase. This means that the presence of the all-over part-
through crack would affect the frequencies of natural vibration of the viscoelastic rectangular plate of the
plate. Thus, the local flexibility increases. As a result, the corresponding stiffness of the plate decreases and
the stiffness of the structure diminishes with increase in the crack. With the increase in crack number, the
corresponding variation ratios of the real and imaginary parts of dimensionless complex frequencies increase.
By increasing the aspect ratio and thickness ratio, the real and imaginary parts of the dimensionless complex
frequency o will increase. In addition, the less the aspect ratio of the plate, the less the variation ratio of the
real part and imaginary part of dimensionless complex frequencies with increase in crack depth.

The present approach can be extended to study the vibration characteristics and dynamic stability of
viscoelastic cracked plate with other types of varying-thickness and boundary conditions.
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